DOCUMENTED CHROMOSOME NUMBERS 1999:1. CHROMOSOME NUMBERS AND POLLEN DIAMETER VARIATION IN THELESPERMA (ASTERACEAE) # LEE F. GREER1 and A. MICHAEL POWELL Department of Biology Sul Ross State University, Alpine, TX 79832, U.S.A. ## ABSTRACT Diploid and tetraploid chromosome numbers and pollen measurements are reported for 95 collectrions from five taxa of *Thelesperma* (Asteraceae). These chromosome counts include the first 17 diploid (2x) reports for *T. megapotamicum* var. *ambiguum*. A correlation between ploidy level (2x, 4x) and pollen diameter (mm) is found in diploid and polyploid plants of *T. megapotamicum* and *T. simplicifolium*. In both raxa, multivalent configurations (IV, V, VI, X) are found. A recurring oversized bivalent (II) was observed in up to 23 of the 103 collections from four of the five raxa studied. #### RESUMEN En este estudio se contaron números cromosomáticos diploides y tetraploides, y medidas de polen de 95 colecciones, las cuales en toral agrupan cinco táxones de Thelaperna (Asteraceae). Los recuentos de cromosomas incluyen 17 de diploides (2x) de T. megapotamicum var. ambiguam, publicados ahora por primera vez. En plantas diploides y poliploides de T. megapotamicum y T. simplicifolium se encontró una correlación entre el nivel de ploidía (2x, 4x) y el diámetro del polen (mm). Además ambos táxones presentaron configuraciones multivalentes (IV, V, VI, X). Posiblemente en 23 de las 103 colecciones se observó una recurrencia de bivalentes (II) con tamaño incrementado, en cuarro de los cinco táxones. Melchert (1963) included approximately 169 documented chromosome counts for 10 taxa of Tbelesperma. Prior to the Melchert (1963) study, chromosome numbers were known for 10 of the 15 taxa recognized in his treatment, and counts of n=8,9,10,11,12 and 22 were already established for Tbelesperma. The pre-1963 counts led erroneously to the notion that every taxon of Tbelesperma was characterized by a single chromosome number. Melchert discovered 2x dysploid series in four taxa of Tbelesperma and dysploid diploid and polyploid plants in three taxa. The documented counts reported by Melchert (1963) were never published. About 27 chromosome counts for Tbelesperma published in 15 papers since 1966 (see Goldblatt & Johnston Correspondence should be addressed to L.Greer, Loma Linda University, Dept. of Nat'l. Sci.-Biology Section, Loma Linda, CA 92350, U.S.A., Igreer03g@ns.llu.edu. 910 Sida 18(3) 1990, and earlier Indices to Plant Chromosome Numbers) also revealed chromosome number variation in the genus. Certain meiotic irregularities in *Thelesperma*, mostly one to five rings-of-four in diploids and polyploids, were reported by Melchert (1963), Strother (1976), Keil and Pinkava (1976), and others We document numerous chromosome counts from five taxa of *Thelesperma*. Most of the counts resulted from a populational study of the diploid-tetraploid *T. megapotanicum-T. ambiguum* complex, which was the focal point of thesis research (Greer 1997). We comment on meiotic irregularities and the correlation between ploidy level and pollen diameter in *Thelesperma*. ## METHODS AND MATERIALS Capitula for meiotic analysis were fixed in Modified Carnoy's Solution (4 chloroform: 3 ethanol: 1 glacial acetic acid; v:v:v). Standard squash techniques (Turner & Johnston 1961) and acetocarmine stain were employed in chromosomal observations. The sources of pollen for pollen size comparisons were the same as those for meiotic analyses. Pollen sizes were measured by ocular micrometer calibrated with slide micrometer such that 1 ocular unit equaled 1 µm (Greer 1997). Often up to 10–30 pollen grains were measured for a given collection. Correlations between pollen diameter and ploidy level were established by a two-step process. A consensus measurement was estimated for the most frequent ranges of pollen diameters found in each voucher collection (inclusive and exclusive of the pollen exine, i.e., mm exinate and intinate). These consensus measurements (in mm exinate and intinate) were then plotted against the inferred ploidy levels of the respective specimens (Fig. 1). All the voucher specimens are preserved at the Sul Ross State University Herbarium (SRSC) except for the B.L. Turner collections of *T. filifolium* var. *filifolium*, which are housed in the Herbaria of the University of Texas at Austin (TEX and LL). ### RESULTS Included are 95 original chromosome number reports for four species (five taxa) of *Thelasperma*. Specimen citations are accompanied by meiotic chromosome numbers, configurations, irregularities, and pollen diameters in Table 1. Certain capitulum characters of *T. megapotamicum* var. *megapotamicum* and *T. megapotamicum* var. *ambiguum* are included, e.g., heads radiate or discoid and disc corolla coloration, because the putative hybrids of these taxa are thought to be distinguishable by variation in these characters (Melchert 1963; Greer 1997). It is important to note that both 2x and 4x chromosome numbers and pollen grains with variable diameter were often observed # Pollen diameter - Ploidy level Fig. 1. Plot of exinate (small diamonds) and inrinate (small squares) pollen diameter consensus measurements versus putative ploidy levels (for 60 voucher collections, Table 1): 1x pollen measurements (mean = 21 mm, s.d. = 1.23); 2x pollen measurements (mean = 28, s.d. = 2.7); 3x pollen measurements (m = 42, s.d. = 3.6). Trend line follows a five percent moving average for exinate diameters. in the same populations and even in the same individual plants (Table 1). The Turner collection of T. filifolium var. filifolium in Kimbel County yielded the rare euploid cytotype of n=11 (Greer 1997). Most collections of T. filifolium var. filifolium have the dysploid cytotypes of n=9 and n=8 (Melchert 1963). This chromosome number (Greer 1997) confirms the continued existence of this rare cytotype in Kimbel County which was first reported by Melchert (1963). ### DISCUSSION The 17 diploid (2n = 22) chromosome counts obtained for T. megapotamicum var. ambiguum (RESULTS) represent the first diploid (2x) chromosome numbers reported for the taxon. Previous reports (Melchert 1963; Turner & Flyr 1966) suggested that var. ambiguum was exclusively tetraploid throughout its range. Melchert (1963) recognized T. megapotamicum and T. ambiguum as distinct species. He listed 42 counts for the complex, 17 diploid and tetraploid counts for T. megapotamicum, 19 tetraploid counts for T. ambiguum, and six tetraploid Table 1. The meiotic chromosome numbers, configurations, irregularities, and pollen diameters with the respective taxon, source specimen collection numbers, and locations. Collections are arranged alphabetically by taxa. Observed multivalent configurations and both exinate and intinate pollen diameters are included. The putative presence of the oversized bivalent is designated by (II). Chromosome counts or pollen measurements from more than one plant are indicated as (populational). Authorities for the taxonomy are noted below! | Taxon & capitular characters | Locality & collection no. | Ploidy
level
(x=11) | Chromosome
number | Pollen diameter (µm)
(exinate & intinate) | |--|--|--|-------------------------------------|--| | T. filifolium var. filifolium
Red-brown disc, radiate | Tex.: Harper County Turner s.n. (a,b) | 2x | 2n = 9 II (II) $2n = 10 II (II2)$ | 10. | | T. filisolium var. filisolium
Red-brown disc, radiate | Tex.: Kimbel County
Turner s.n. | 2x | n = 11 | (Anaphase I: Only one
side countable) | | T. longipes
Yellow discoid | Tex.: Crockett County | ≈2x | | 18-20-24 µm exinate | | fellow discord | 5 mi N of Ozona
Greer 122a,b
(populational) | ≈4x | | 14–16–18 µm intinate
26–28 µm exinate
22–23 µm intinate | | T. megapotamicum
var. megapotamicum
Yellow disc, radiate.
(red-brown 75%, orange
& yellow, ca. 12% each) | Tex.: Terrell County
5.5 mi E of Longfellow
Powell, 267 l7
(populational) | 2x | 2n = 11H | | | T. megapotamicum
var. megapotamicum
Yellow discoid | Tex.: Brewster
County ~11.6 mi NE
of Alpine | ≈2x | | 20–23(–25) μm exinate
16–18(–22–24) μm
intinate | | | Greer 111 | ≈4x, 6x? | | 29–30(–45) μm exinate
26–29(–40) μm
intinate | | T. megapotamicum
var. megapotamicum
Yellow discoid, reddish
disc lobes (red-brown at
maturity) | Tex.: Brewster County
~25 mi S of
Ft. Stockton
Powell 2735 | 2x | 2n = 1111 | | | T. megapotamicum
var. megapotamicum | Tex.: Pecos County
3 mi E of TX 1776/11
Greer 114 | 2 <i>x</i>
≈4 <i>x</i> , 6 <i>x</i> | $2n = 11 \Pi (H)$ | 18–20 µm exinate
(10–)15–18 µm
intinate
30 µm exinate few to
40 µm exinate | | T. megapotamicum
var. megapotamicum
Yellow discoid | NMex.: Socorro
County~34 mi E
of San Antonio
Powell 2528 | 2x | 2n = 11II | | ²Taxonomy with authorities: Thelesperma Lessing; T. filifolium (Hook.) A. Gray var. filifolium; T. longipes A. Gray; T. megapotamicum (Spreng.) O. Kuntze var. megapotamicum; T. megapotamicum (Spreng.) O. Kuntze var. ambiguum (A. Gray) Shinners; T. simplicifolium A. Gray var. simplicifolium. | Taxon & capitular characters | Locality & collection no. | Ploidy
level
(x=11) | Chromosome
number | Pollen diameter (mm)
(exinate & intinate) | |---|--|---------------------------|---|--| | T. megapotamicum
var. megapotamicum
Yellow discoid | Tex.: Hudspeth
County 12.5 mi E of
Dell City
Powell 2831 | 4 <i>x</i> | 2 <i>n</i> ≈ 22II | | | T. megapotamicum
var. megapotamicum
Yellow disccoid (~ 50%
red and yellow discs) | Tex.: Presidio County
32 mi S of Marfa
Powell 2522 | 4x | $2n \approx 18II + 2IV$ | | | T. megapotamicum
var. megapotamicum
Yellow discoid | Tex.: Brewster County
5 mi W of Mararhon
Sloan and Powell 2542 | 4 <i>x</i> | $2n \approx 18I1 + 2IV$ | | | T. megapotamicum
var. megapotamicum
Yellow discoid | Tex.: Brewster County
W side of Alpine
Greer 96 | 4x | 2n = 18II + 2IV $2n = 22II$ $2n = 21II$? | (211?) | | T. megapotamicum
var. megapotamicum
Rich, golden yellow
discoid. | Tex.: Brewster County
W side of Alpine
Greer 100 | 4x | 2n = 22II $2n = 13II + 4IV$ | ?? (11?) | | T. megapotamicum
var. megapotamicum
Yellow discoid | Tex.: Brewster County
~10 mi NE of Alpine
Greer 110 | 4x | 2n = 22II
Anaphase I
dicentrics | 25–30(–31) μm exinate
18–23(–28) μm
intinate
Immat.: 10 μm exinate
6 μm intinate | | T. megapotamicum
var. megapotamicum
Yellow discoid | Tex.: Pecos County
2 mi E of Imperial
Greer 116a.b,c
(populational) | ≈4x | 2n = 20-21II (? |) | | T. megapotamicum
var. megapotamicum
Yellow discoid | Tex.: Pecos County
12.9 mi E of Imperial
Greer 119 | ≈4x
≈2x | 2n = 20–2111
(?) | 25–35(–49 crushed)
µm exinate
20–22 µm exinate
15–18–20 µm intinate
Dimorphic pollen in 1:1
ratio.
26–29(–31) µm
intinate | | T. megapotamicum
var. megapotamicum
Yellow disc. radiate | Tex.: Terrell County
E side of Lozier | 4x
{≈4x?}
≈6x? | 2n = 22II | 23–24 µm exinate
19–21mm intinate | | renow disc, radiate | Canyon
Greer 169 | ~ox? | I-3 1V | 40–50 µm exinate
25–33 µm intinate | | T. megapotamicum
var. megapotamicum | Tex.: Terrell County
W side of Lozier | 2 <i>x</i> | 2n = 1111 | 19–22 µm exinare {≈2x} | | Yellow disc, radiate | Canyon
Greer 171 | 4x | 2 <i>n</i> ≈ 2211 | 25–29 μm exinate
{*4x?} | Table 1 continued | Taxon & capitular characters | Locality & collection no. | Ploidy
level
(x=11) | Chromosome
number | Pollen diameter (mm)
(exinate & intinate) | |---|---|---------------------------|---|---| | T. megapotamicum
vat. megapotamicum | Tex.: Ward County
8 mi N of Jct. TX
1776/1450
Greer 175 | 2x | 2n = 9H+11V
(?)(H) | | | T. megapotamicum
vat. megapotamicum | Tex.: Ward County,
TX 2 mi N of
Monahans
Greer 177 | 2x | 2n = 11 H (H)
2n = 12 H? (2)
2n = 9 H + 11 V | | | T. megapotamicum
var. megapotamicum
Young appearing plants | Tex.: Winkler
County, TX 14.7 mi
N of Monahans | 2x
≈4x | 2n = 11II | Avg.: 20 μm exinate Avg.: 29–30 μm | | (1 st year perennials?)
T. megapotamicum
var. megapotamicum | Greer 179 Tex.: Winkler County 4.5 mi NE of Kermit Greer 181 | 2x | $\overline{2}n = 1111$ | exinate | | Т. тедароклийст
vax. тедарокатист | Tex.: Winkler County
14 mi NE of Kermit
Greer 182
(populational) | 2x | $2n = 11\Pi (II)$
$2n = 9\Pi + 1IV$
$2n = 5\Pi + 5IV$ or $6\Pi + 5IV$ (2)
$2n = 4\Pi + 2IV + 1VI$
$2n = 11\Pi$ or 9Π
1IV | 1 st head: Most 18–20 μm exinate (132–1)-i–15 μm intinate few clusters: 27–30 μm exine 18–20 μm intinate f=4x) 2 nd head clusters: –3.2 μm exinate f=4x) 3 rd + head: –3.5 μm exinate 23–30 μm intinate intinate | | T. megapotamicum
var. megapotamicum
Young plants
(1st year perennials) | Tex.: Winkler County
16.3 mi NE of Kermit
Greer 183
(populational) | 2x
4x | $2n = 9\Pi$
$2n = 11\Pi (H)$
$2n = 9\Pi + \Pi V$
$2n = 18\Pi + 2\Pi V$ | | | T. megapotamicum
vat. megapotamicum
Reddish involucres | Tex.: Andrews County
N of Winkler-Andrews
County line
Greer 185 | | $2n=11\Pi\left(H\right)$ | | | T. megapotamicum
var. megapotamicum | Tex.: Andrews County
24.3 mi NE of Kermit
Greer 186a | 2x | 2n = 11II
2n = 9II + 1IV
2n = 10II ? (II) | | | T. megapotamicum
var. megapotamicum | Tex.: Andrews County
24.3 mi NE of Kermit
Greer 186b | 2x | 2n = 11II
2n = 10II? (II) | | | Taxon & capitular characters | Locality & collection no. | Ploidy
level
(x=11) | Chromosome
number | Pollen diameter (mm)
(exinate & intinate) | |--|--|---------------------------|--|--| | T. megapotamicum
var. megapotamicum
Yellow discoid | Tex.: Brewster County
36.4 mi S of I-10,
US 67
31 May 1995
Greer 187 | 4a | 2n = 11II + 3IV
2n = 18II + 2IV
2n = 17II + 1IV
2n = 17II + 1IV | r
r + 1VI + 1VI (<i>II</i> ?) | | T. megapotamicum
var. megapotamicum
Yellow discoid | Tex.: Brewster County
9.6 mi E of Marathon
Greer 195 | 4x | 2n = 22H (?) | | | T. megapotamicum
var. megapotamicum
Yellow disc, radiate | Tex.: Pecos County
40.5 mi E of Marathon
Greer 206 | ≈2x | | (19–)21–22 μm exinate
17~18 μm intinare | | T. megapotamicum
var. megapotamicum
Orange-yellow disc,
radiate; large trilobate
ray florets | Tex.: Terrell County
41.7 mi E of Marathon
Greer 216 | 2 <i>x</i> | 2n = 1111 | | | T. megapotamicum
var. megapotamicum
Yellow disc,
reduced radiate | Tex.: Terrell County
42.4 mi E of Marathon
Greer 217 | 2χ | $2n = 11\Pi$ | | | T. megapotamīcum
var. megapotamicum
Yellow discoid | Tex.: Terrell County
>46 mi E of Marathon
Greer 222 | 4x? | $2n \approx 22 \text{H (?)}$ | | | T. megapotamicum
var. megapotamicum
Dark yellow disc,
minute ray florets | Tex.: Tertell County
51 mi E of Marathon
Greer 226 | 2x | 2n = 11II | | | T. megapotamicum
var. megapotamicum
Yellow, red-tinted
discord | Tex.: Terrell County
52.4 mi E of Marathon
Greer 228 | 4x | $2n=22\Pi\left(?\right)$ | | | T. megapotamicum
var. megapotamicum
Yellow disc, radiate | Tex.: Terrell County
51.5 mi E of Marathon
Greer 234a | 2N | 2n = 11II | | | T. megapotamicum
var. megapotamicum
Yellow disc, radiate | Tex.: Terrell County
51.5 mi E of Marathon
Greer 234h | 2x
4x | 2n = 1111 (H)
2n = 2211
2n = 2011 + 11V | | | T. megapotamicum
var. megapotamicum
Yellow discoid | Tex.: Terrell County
29.1 mi W of Lozier
Canyon
Greer 262 (populational | Áx | n = 22
Anaphase 1
≥21Vs
per meiocyte | 25, 28–30, ~40 μm
exinate
{≈4x, 6x?} | Table 1 continued | Taxon & capitular characters | Locality & collection no. | Ploidy
level
(x=11) | Chromosome
number | Pollen diameter (mm)
(exinate & intinate) | |--|--|---------------------------|---|---| | T. megapotamicum
var. megapotamicum
Golden disc,
very reduced radiate | Tex.: Terrell County
32.6 mi W of Lozier
Canyon
Greer 263 | 4x | 2n = 22II
lagging chromos | 5. | | T. megapotamicum
var. megapotamicum
Reddish yellow disc,
radiate (somewhat
reduced),yellow style
branches | Tex.: Terrell County
32.6 mi W of Lozier
Canyon
Greer 264 | 4x | 2n = 22II (?)
lagging chromos | 5. | | T. megapotamicum
var. megapotamicum
Yellow disc, radiate
(dark colored disc florets) | Tex.: Terrell County
34.0 mi W of Crozier
Canyon
Greer 268 | 4x | 2 <i>n</i> ≈ 2111 | | | T. megapotamicum
var. megapotamicum
Yellow discoid | Tex.: Terrell County
~40+ mi W of Lozier
Canyon
Greer 271b | -ÍX | 2n = 22H(?)
$\{\approx 2x?, 4x, 6x?\}$ | 22–26, 40 µm
exinate
20–25 µm intinate | | T. megapotamicum
var. megapotamicum
Dark yellow discoid | Tex.: Val Verde
County 5 mi W
of Del Rio
Greer 155 | 4x {6x?} | 2 <i>n</i> ≈ 22 H | 25–26(–30) μm exinate
(16–)18–20(–22) μm
intinate
(up to 35 μm intinate) | | T. megapotamicum
var. megapotamicum
and var. ambiguum
Yellow discoid;
2 orange discoid
(one clump) | Tex.: Terrell County
52.4 mi E of Marathon
Greer 231
(mixed populational) | 4x = 12H + 1 | 2n = 17H + 2IV
+ 1 dicentric
Anaphase I: Sej
2n = 11H + 4IV
+ 1VI | parated | | T. megapotamicum
var. ambiguum
Orange disc, radiate | Tex . Brewster
County 5 mi W of
Marathon
Powell 2683 | 2x | 2n = 11II | | | T. megapotamicum
var. ambiguum
Reddish-brown disc,
radiare (mixed
popularion of radiare
& discoid) | Tex.: Brewster
County near Terlingua
Powell 2512 | 4x | 2n≈ 18H + 2IV | | | T. megapotamicum
var. ambiguum
Red discoid | Tex.: Brewster County
~17.1 mi NE of Alpine
Greer 113 | | | (26–)30–33(–34) μm
exinate
(20–24)27–29 μm
intinate
variable | | Taxon & capitular characters | Locality & collection no. | Ploidy
level
(x=11) | Chromosome
number | Pollen diameter (mm)
(exinate & intinate) | |---|---|---------------------------|---|--| | T. megapotamicum
var. ambiguum
Red disc, radiate;
double layer ray florets | Tex.: Pecos County
40.5 mi E of Marathon
Greer 207 | 2 <i>x</i> | 2n = 11II (II) | | | T. megapotamicum
var. ambiguum
Red discoid | Tex.: Terrell County
41.7 mi E of Marathon
Greer 213 | 2x | 2n = 1111 | | | T. megapotamicum
var. ambiguum
Orange disc, radiate
(slender ray florets) | Tex.: Terrell County
32.6 mi W of Lozier
Canyon
Greer 265 | 4x | $2n=22\Pi\left(?\right)$ | | | T. megapotamicum
vat. ambiguum
Red-brown discoid | Tex.: Brewster County
Marathon
Powell and Powell 2540 | 2 <i>x</i> | 2n = 18II + 2IV | | | T. megapotamicum
var. ambiguum
Red-brown discoid | Tex.: Brewster County
5 mi W of Marathon
Powell and Powell 2541 | 4x | $2n \approx 18II + 2IV$ | | | T. megapotamicum
var. ambiguum
Orange disc, radiate;
some double ray florets | Tex.: Terrell County
51.5 mi E of Marathon
Greer 235 | 2x
4x | 2n = 11II (II?)
2n = 22II
(2 meiocytes) | | | T. megapotamicum
var. ambiguum
Light orange disc,
radiate | Tex.: Terrell County
10.2 mi W of Lozier
Canyon
Greer 255 | 4x | 2n = 22II (II) $2n = 18II + 2IV$ | (II) | | T. megapotamicum
var. ambiguum
Orange discoid almost:
2 minute ray florets | Tex.: Terrell County
29.1 mi W of Lozier
Canyon
Greer 259 | 4x | $2n \approx 18-19II + 2n = 22II (?)$ | 11 V | | T. megapotamicum
var. ambiguum
Small red disc, radiate | Tex.: Terrell County
0.9 mi W of Sanderson
Greer 280 | 2 <i>x</i> | $2n=11 \mathrm{II}$ | | | T. megapotamicum
var. ambiguum
Red disc, radiate | Tex.: Terrell County
I.1 mi W of Sanderson
Greer 283 | 2 <i>x</i> | 2n = 1 III (24H |); | | T. megapotamicum
var. ambiguum
Reddish-brown disc,
radiate | Tex.: Brewster County
70 mi S of Alpine
Powell and Powell 2540 | 4x | $2n \approx 18\text{II} + 2\text{IV}$ | , | | T. megapotamicum
var. ambiguum
Red-brown disc, radiate
(red-brown 75%, orange
& yellow, ca. 12% each) | Tex.: Terrell County
5.5 mi E of Longfellow
Powell. 2671a
(populational) | 2x | 2n = 11II | | Table I continued 918 | Taxon & capitular characters | Locality & collection no. | Ploidy
level
(x=11) | Chromosome
number | Pollen diameter (mm)
(exinate & intinate) | |--|--|---------------------------|--|---| | T. megapotamicum
var. ambiguum
Orange disc, radiate
(red-brown 75%, orange
& yellow, ca. 12% each) | Tex.: Terrell County
5.5 mi E of Longfellow
Powell. 2671b
(populational) | 2x | 2n = 1111 | | | T. megapotamicum
var. ambiguum
Red discoid | Tex.: Brewster County
36.4 mi S of I-10,
US 67
31 May 1995
Greet 188a | 4x | 2n = 13II + 4IV $2n = 15II + 1IV$ | | | T. megapotamicum
var. ambiguum
Reddish-tinged discoid | Tex.: Brewster County
36.4 mi S of I-10,
US 67
31 May 1995
Greer 188b | 4x | $2n = 20\Pi + 1\Pi$ | , | | T. megapotamicum
var. ambiguum
Red discoid,
yellow style branches | Tex.: Brewster County
12.9 mi N of Jet.
US 67/90
Greet 191a.b
(populational) | 4x | 2n = 22II
$2n \approx 20II$
lagging chromo | s. | | T. megapotamicum
var. ambiguum
Red discoid | Tex.: Brewster County
3.5 mi E of Marathon
Greer 192 | 4x | 2n = 18H + 2H | , | | T. megapotamicum
var. ambiguum
Deep orange disc, radiate | Tex.: Terrell County
42.4 mi E of Marathon
Greer 218 | 2x | 2n = 11H | | | T. megapotamicum
var. ambiguum | Tex.: Terrell County
>46 mi E of Marathon | 2x | 2n=1111(?) | 20–21 µm exinate
15–18 µm intinate | | Orange discoid | Greer 220 | 4x | $2n = 22\Pi(?)$
$2n \approx 22\Pi$ | 26 μm exinate
(1 pollen) | | | | =4x | 2#≈ 2211 | 20 µm intinare
(I pollen)
30 µm exinate
(1 shattered pollen) | | T. megapotamicum
var ambiguum
Reddish discoid | Tex.: Terrell County
52.4 mi E of Marathon
Greer 229 | 4x | $2n \approx 2111$ $2n = 2211?$ | 20-22, 24-26(-31)
µm exinate
(16-)20-22 µm
intinate
[≈2x, 1x] | | T. megapotamicum
var. ambiguum
Orange disc,
large ray florets | Tex.: Terrell County
52.4 mi E of Marathon
Greer 230 | 2x | 2n = 1111 | | Table 1 continued | Taxon & capitular characters | Locality & collection no. | Ploidy
leveI
(x=11) | Chromosome
number | Pollen diameter (mm)
(exinate & intinate) | |---|---|--------------------------------|---|---| | T. megapotamicum
var. ambiguum
Red discoid; some heads
more reddish than
others on the same plant | Tex.: Pecos County
33.7 mi E of Marathor
Greer 200a,b
(populational) | 4 <i>x</i> | 2n = 22H (?) | | | T. megapotamicum
var. ambiguum
Red disc, radiate | Tex.: Pecos County
38.8 mi E of Marathon
Greer 201 | 2x | 2n = 11H | | | T. megapotamicum
var. ambiguum
Orange disc, radiate
(large ray florets
some double layered) | Tex.: Pecos County
38.8 mi E of Marathon
Greer 202 | 2x | 2n = 11II | | | T. megapotamicum
var. ambiguum
Reddish-tinted discoid, | Tex.: Terrell County
E side of Lozier
Canyon | 4x | $2n \approx 22\Pi$ | 1st Head: 26–31mm
exinate
23–29 µm intinate | | orange discoid,
reduced radiate | Greer 170
(populational) | $\approx 6x$?
$\approx 2x$ | | 37–48 µm exinate
34, 42 µm incinare
2 nd Head: 17–26 µm
exinate | | | | ≈2x | | 15–21 μm intinate
3 rd Head: 23 μm
exinate | | | | ≈-1x | | 19 μm intinate
28–31 μm exinate
23–27 μm intinate | | f. megapotamicum
var. ambiguum
Reddish discoid | Tex.: Maverick County
4 mi NW of Eagle
Pass Greer 144a.b.c.d
(popuational) | 4x | 2n = 22H (?)
two Anaphase
dicentrics | i | | E. megapotamicum
var. ambiguum
Radiate | Tex.: Maverick County
4.3 mi NNW of
Quemado
Greer 145 | ≈4x | 2 <i>n</i> ≈ 20II | | | I. megapotamicum
rar. ambiguum
Discoid | Tex.: Maverick County
Rio Grande Valley,
US 277 | ≈4x | | 25–31mm exinate
(18–19–)23–30 μm
intinate | | | Greer 146 | =4x
=6x? | | 28–30 μm exine
(20–)22–30 μm
–36 μm (few)–39 μm | | E. megapotamicum
vat. ambiguum | Tex.: Maverick County
8.1 mi NNW of | ≈2x | | 19-22 µm exinate | | Discoid, orange style
branches | | ≈ 1x | $2n \approx 15 \text{II} + 21 \text{V} + 1 \text{VI}$ | 11–18 μm intinate
20–31 μm exinate
20–22, 25, 28 μm
intinate | Table I continued 920 | Taxon & capitular characters | | Ploidy
level
(x=11) | Chromosome
number | Pollen diameter (mm)
(exinate & intinate) | |--|---|---------------------------|---|---| | | | ≈ix! | | one cluster: 25–30
μm exinate
22–26 μm
intinate | | T. megapotamicum
var. ambiguum
Red discoid | Tex.: Val Verde
County Del Rio,
US 90
Greer 151 | ≈4x
{6x?} | 2n = 22H? (H)
At least 1 IV
+ H | 28–29(–35) μm exinate
19–20 μm intinate | | T. megapotamicum
var. ambiguum
Orange disc, radiate | Tex.: Val Verde
County 5 mi W
of Del Rio
Greer 152 | ≈2x
≈4x | 2n ≈ 10–12II (?)
Anaph. I
dicentric
lagging
chromos.
2n ≈ 22II | 20–21 μm exinate
(11–)15–18 μm
intinate
Immat.: 13–15 μm
exinate | | | | | (one cluster) | 20–25(–32) μm exinate
20–22, 26–29 μm
intinate
Immat.: 20–21 μm
w/o exinate | | T. megapotamicum
var. ambiguum
Red discoid | Tex.: Val Verde
County 5 mi W
of Del Rio | ≈2x? | $2n = 11 \Pi (?)$ | 21–20 µm exinate
(15–)18–20 µm
intinate | | Red discord | Greer 153 | 4x
6x?
8x? | 2n = 2211
2n ≈ 2011
Anaphase 1
dicentric | 25–30 μm exinate
20–26 μm intinate
–40 μm exinate
–<50 μm exinate | | T. megapotamicum
var. ambiguum
Red disc, reduced
radiate | Tex.: Val Verde
County 5 mi W
of Del Rio
Greer 154 | ≈-Î <i>X</i> | | 25–31(–35) μm exinate
18–24(–29) μm
intinate | | T. megapotamicum
var. ambiguum
Red disc, radiate | Tex.: Val Verde County
5 mi W of Del Rio
Greet 157a,b,c,d,e
(populational) | 4x | 2n = 2211 (?) | | | T. megapotamicum
var. ambiguum
Red-orange disc, radiate | Tex.: Val Verde County
2.0 mi W of Comstock
Greer 162 | | 2 <i>u</i> ≈ 22 U | | | T. megapotamicum
var. ambiguum
Orange discoid | Tex.: Pecos County
40.5 mi E of Marathon
Greer 204 | 2x | 2n = 1 III $2n = 10 II (?)$ | | | T. megapotamicum
var. ambiguum
Reddish-brown disc
lobes, corolla throats
yellow, radiate | Tex.: Brewster County
Terlingua Creek
Powell 2509 | 4x | 2n ≈ 18II + 2 I° | Vs | Table I continued | Taxon & capitular characters | Locality & collection no. | Ploidy
level
(x=11) | Chromosome
number | Pollen diameter (mm)
(exinate & intinate) | |---|--|---------------------------|--|---| | T. megapotamicum
var. ambiguum
Red-brown disc, radiate | Tex.: Brewster County
5 mi W of Marathon
Powell 2684 | 2x | 2n = 11II | | | T. simplicifolium
var. simplicifolium | Tex.: Val Verde
County25.7 mi W
of Pecos River
Greer 166 | 2x | 2n = 10II or 11
(one II may to
overlapping) | | | T. simplicifolium
var. simplicifolium
Yellow disc, radiate | Mexico: Coahuila,
Powell, D. Patterson,
D. Ittner 1584 | 4x | 2n = 20II | | | T. simplicifolium
var. simplicifolium | Tex.: Crockett County
4.8 mi E of Jct. TX | 2x | 2n=1011(H) | (22–)24–25 μm exinate
14–17 μm intinate | | | 163/190
Greer 127 | ≈4x? | | 27 μm exinate
20-21(-23) μm
intinate | | | | ≈6x? | | 42? μm exinate
37? μm intinate | | T. simplicifolium
var. simplicifolium | Tex.: Val Verde
County23.8 mi W
of Del Rio
Greer 158 | ≈2x | | Avg.: 20 μm exinate
(10–12)15 μm
intinate | | T. simplicifolium
var. simplicifolium | Tex.: Kinney County
21.1 mi NW of
Ouemado | 2x $=4x$ | 2n = 1011;
2n = 10? 13? | 20–22 µm exinate
15–18 µm intinate
a few cells: 25. | | | Greer 150 | -12 | | 31mm exinate,
~23 μm | | T. simplicifolium
var. simplicifolium
Yellow disc, radiate
Curvicarpum achene form | Tex.: Menard County
1 mi E of TX 29/83
Greer 137 | 2 <i>x</i> | 2n = 1011
Anaphase I lag
chromosomes one bivalent (I | rging
of | | T. sımplicifolium
var. sımplicifolium | Tex.: Menard County
1 mi E of TX 29/83 | ≈2x | | 18–20 μm exinate | | Yellow disc, radiare
Curvicarpum achene form | Greer 138 | =6x? | | 35–36(–10) μm exinate
base of echinations:
30 μm | | T. simplicifolium
var. simplicifolium | Tex.: Maverick County
Rio Grande Valley,
US 277 | 2x
{≈4x?} | 2n = 11 H (H) | 20–23(–29, 30) μm
exinate
15–17 μm intinate | | T. simplicifolium
var. simplicifolium
Yellow disc, large
overlapping ray florets | Greer 147 Tex.: Terrell County 0.2 mi W of Lozier Canyon Greer 243 | 2x
4x | $2n \approx 11\Pi$ $2n = 20\Pi$ | 20–21–24 μm exinate
(13–)16–20 μm
intinate | Table 1 continued | Taxon & capitular characters | Locality & collection no. | Ploidy
level
(x=11) | Chromosome
number | Pollen diameter (mm)
(exinate & intinate) | |------------------------------|--|---------------------------|---------------------------------|--| | T. simplicifolium | Tex.: Val Verde | 2x | 2n = 20(2) | 21–22 µm exinate | | var. simplicifolium | County 0.7 mi W of
Pecos River
Greer 163 | | $2n \approx 10 \text{H } (3H2)$ | 14–16 µm intinate | | | | $\approx 4x$ | | 26–28(–29–30) μm
exinate | | | | | | 22–24(+26) μm
intinate | counts for putative hybrids between the taxa. Because of their remarkable morphological similarity, identical meiotic cytologies (2n = 22, 44 with multivalents), and the ease with which they apparently interbreed where sympatric, T. megapotamicum and T. ambiguum are best treated as varieties elightly reduced habit of var. ambiguum, and disc coloration. Disc florets of var. megapotamicum are yellow and heads generally are discoid; disc florets of var. ambiguum are red-brown and heads are generally yellow-radiate. The reports (Table 1) for the T. megapotamicum complex provide an expanded understanding of how diploid and polyploid distribution in the species is structured, especially in Texas. Thelesperma megapotamicum var. megapotamicum is almost exclusively diploid (2n = 22) with yellow, discoid heads in most of its range, which extends from Nebraska, Colorado, and Wyoming west to Arizona, south across Trans-Pecos Texas into central Mexico, and east to northwest Texas (Melchert 1963). In the predominant portion of its range which extends from south Texas and near the Rio Grande Valley west into Val Verde County, T. megapotamicum var. ambiguum is largely tetraploid (2n = 44) with red-brown disc corollas and large, yellow ray florets. However, west of the Pecos River, mixed diploid and tetraploid populations of var. ambiguum occur from western Val Verde County through Terrell and Brewster counties (Greer 1997). The floral morphology of these populations of var. ambiguum vary from radiate with red-brown discs, discoid orange, radiate orange, to discoid red-brown. Along this same axis, var. megapotamicum plants are also often diploid (2n = 22) with yellow discs and ray corollas. Populations of var. megapotamicum elsewhere in the Trans-Pecos are mostly tetraploid (2n = 44) with vellow discoid heads, although there are occasional plants with vellow discs and vellow ray florets, often reduced in length. Melchert (1963) interpreted plants from this area resembling both var. megapotamitum and var. ambigunum as hybrids or intergrades between the taxa. He found only tetraploids in this area. This region of apparently extensive morphological intergradation seems to mark the sympatric overlap of the ranges of var. *megapotamicum* and var. *ambiguum* from western Val Verde County west into Brewster County. The intergradation is so smooth and continuous that morphotypes were difficult to assign taxonomically. Origins of polyploidy. The origins of polyploidy in *T. megapotamicum* remain uncertain. Variation in floral character combinations in the sympatric region, high fertility, and the absence of univalents or trivalents in meiotic observations, suggest that alloploidy is more likely than autoploidy in var. *ambiguum* (Greer 1997). Because of the lack of morphological differentiation between diploids and tetraploids, however, polyploidy in the typical yellow discoid var. *megapotamicum* seems more likely to be autoploid. For similar reasons, autoploidy also seems more likely in other polyploid taxa of *Thelesperma* such as *T. simplicifolium* and *T. longipes* (Greer 1997). Multivalent configurations have been observed at meiosis in diploid (Keil & Pinkava 1976; Greer 1997; Results) and in tetraploid (Melchert 1963; Strother 1976; Powell & Powell 1977; Greer 1997; Results) cytotypes of both T. megapotamicum var. megapotamicum and T. megapotamicum var. ambiguum. Melchert (1963) reported that in tetraploids, two rings-of-four (IV) were most common, and that one and three rings-of-four also were observed. In this study, we report that widely variable numbers of apparent ring and chain quadrivalents (IV), hexavalents (VI), and even decavalents (X) were found in populations of var. megapotamicum and var. ambiguum (Greer 1997). Anaphase segregation was essentially balanced and fertility remained high in spite of the multivalents (Melchert 1963) and the occasional occurrence of dicentric chromosomes (Table 1; Greer 1997). Large bivalent. A persistent large bivalent (II) was observed in mejotic preparations in up to 23 of the 103 collections (Table 1; Greer 1997), most noticeably in preparations from diploid plants. Such an oversized bivalent has been observed in T. megapotamicum var. megapotamicum, T. megapotamicum var. ambiguum, T. simplicifolium var. simplicifolium, and T. filifolium var. filifolium (Greer 1997). An oversized bivalent is also plainly visible in Melchert's (1963) meiotic camera lucida figures of the above taxa as well as in T. longipes, T. filifolium var. intermedium, and possibly also in T. burridgeanum (Greer 1997). Melchert (1963) did not call attention to the large bivalent. In one collection of T. simplicifolium var. simplicifolium (Greer 137; Table 1), the chromosomes of an oversized bivalent lagged in anaphase I. The lagging and dicentric chromosomes observed (Table 1) may be associated with the large bivalent. A large bivalent would be more frequently expected to lag and to undergo paracentric inversions because of its length. The large bivalent may be a result of a massively unequal reciprocal translocation that occurred early in the evolution of Thelesperma (Greer 1997). Pollen diameter variation. Pollen diameter size variations seem to reflect 924 Sida 18(3) the ploidy levels of the plants that produced them (Greer 1997). From diploid plants (2x) of T. megapotamicum, the broad range of pollen diameters for presumed 1x pollen (1x gametophytes) was 17-26 μ m exinate and 11-21 μ m intrinate. From tetraploid plants, the range of pollen diameters for presumed 2x pollen (2x gametophytes) was approximately 20-35 μ m exinate and 18-29 μ m intrinate. Rare pollen found in preparations with even larger diameters, 30-50 μ m exinate and 25-42 μ m intrinate, have been attributed tentatively to 3x pollen (3x gametophytes). (See Fig. 1). Diploid plants of *T. megapotamicum* occasionally were found to produce unreduced 2x pollen (ca. 24–30 µm exinate) along with the more abundant 1x pollen (18–24 µm exinate). In Andrews and Winkler counties where var. megapotamicum is known to occur only as a diploid, discrete clusters of larger pollen were seen in meiotic preparations, suggesting that localized tetraploid (4x) microsporangial tissues are producing clusters of unreduced 2x gametophytes. Plants of both var. megapotamicum and var. ambiguum from Brewster, Terrell, and Val Verde counties, where populations are typically tetraploid, consistently produce pollen of both sizes (ca. 24–30 µm; ca. 18–22 µm) in a nearly 1:1 ratio of putative 1x and 2x pollen. In tetraploids of *T. megapotamicum* larger than normal pollen (30–35 µm) were occasionally observed, suggesting that tetraploids also may be producing unreduced gametophytes (3x², Fig. 1). The same kind of ploidy level—pollen diameter variation was also observed in *T. simplicifolium* vas. *simplicifolium*, which has both diploid and tetraploid cytotypes. The correlation between known chromosome numbers and pollen sizes suggests that in certain species of *Tbelesperma* a given ploidy level may predominate in a specific population or plant, while gametophytes of different ploidy levels are being also produced (Greer 1997). Similar production of unreduced gametes has been reported by Beaman (1957) in *Townsendia* (Asteraceae) and Powell and Sikes (1975) in *Perityle* (Asteraceae) #### ACKNOWLEDGMENTS We thank Sharon Yarborough, Assistant Curator of the Sul Ross State University Herbarium (SRSC), for her help in dealing with specimens of Thelespenna, We are grateful to B.L. Turner for contributing capitula of Thelespenna and for discussing the essence of his systematic observations concerning Thelespenna megapotamicum and other species of the genus. We appreciate loans of specimens from the University of Texas (TEX, LL) and El Instituto de Botanica Darwinion (S1), San Isidro, Argentina. We also thank Cristian Carvajal and Raul Esperante for their translation of the abstract into Spanish. #### REFERENCES - BEAMAN, J.H. 1957. The systematics and evolution of *Townsendia* (Compositae). Contr. Gray Herb. 183:1–151. - GOLDBLATT, P. and D.E. JOHNSON (eds). 1990. Index of plant chromosome numbers (series of monographs from 1975–1987). Missouri Botanical Garden, St. Louis, Missouri. - GREER, L.F. 1997. Origins of polyploidy in Thelesperma (Asteraceae). M.S. thesis, Sul Ross State University, Alpine, Texas. - KEII, D.J. and D.J. PINKAVA. 1976. Chromosome counts and taxonomic notes for Compositae from the United States and Mexico. Amer. J. Bot. 63:1393–1403. - MELCHERT, T.E. 1963. Systematics of the genus *Thelesperma* (A cytotaxonomic and chemotaxonomic study). Ph.D. dissertation, University of Texas, Austin. - Powell, A.M. and S.A. Powell. 1977. Chromosome numbers of gypsophilic plant species of the Chihuahuan Desert. Sida 7:80–90. - Powell, A.M. and S.W. Sikes. 1975. On the origin of polyploidy in *Perityle rupestris* (Asteraceae) Sci. Biol. J. 1:132–137. (Oct–Nov). - STROTHER, J.L. 1976. Chromosome studies in Compositae. Amer. J. Bot. 63:247-250. - TURNER, B.L. and D. FLYR. 1966. Chromosome numbers in the Compositae. X. North American species. Amer. J. Bot. 53:24–33. - TUNNER, B.L. and M.C. JOHNSTON. 1961. Chromosome numbers in the Compositae. III. Certain Mexican species. Brittonia 13:64–69.